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EXECUTIVE SUMMARY 

 

Interstate commercial vehicle traffic is a major factor in the life of any road 

surface. The ability to track these vehicles and their routes through the state 

can provide valuable information to planning activities. We propose a method 

using video cameras to capture critical information about commercial vehicles 

when they enter the state and store this information for later retrieval to 

provide tracking functions. As these vehicles continue on their routes, 

additional cameras will capture images that can be used for route tracking. By 

using these data, reports and highway utilization maps could be generated 

showing commercial vehicle routes and vehicle counts for state highways. 

Spurred by the competitive performance potential realized in face recognition 

via sparse representation [1], we treat the problem of vehicle identification 

with different video sources as signal reconstruction out of multiple linear 

regression models, and use compressive sensing to solve this problem. By 

employing a Bayesian formalism to compute the 1l  minimization of the sparse 

weights, the proposed framework provides new ways to deal with three crucial 

issues in vehicle identification: feature extraction, online vehicle identification 

dataset build up, and robustness to occlusions and misalignment. For feature 

extraction, we use the simple down-sampled features which offer good 

identification performance as long as the features space is sparse enough. The 

theory also provides a validation scheme to decide if a newly identified vehicle 

has been included in the dataset. Moreover, unlike PCA or other similar 

algorithms, using down-sampling based features, one can easily introduce 

features of newly identified vehicles into the vehicle identification database 

without manipulating the existing data in the database. Finally, Bayesian 

formalism provides a measure of confidence for each sparse coefficient. We 

have conducted experiments to include different types of vehicles on the 

interstate highway to verify the efficiency and accuracy of our proposed 

system. The results show that the proposed framework can not only handle the 

route tracking of commercial vehicles, but works well for all classes of vehicles.
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CHAPTER 1  

INTRODUCTION 

States conduct traffic monitoring for many reasons, including highway 

planning and design, and motor vehicle enforcement. Traffic monitoring can be 

classified into two different types: flow monitoring and route monitoring. Flow 

monitoring will observe the amount traffic flow across an interested check 

point, whereas route monitoring will identify the route of an interested vehicle. 

Unlike flow monitoring, route monitoring generally needs to know the identity 

of the observed vehicle and is generally more difficult. This route monitoring 

capability will provide valuable information for freight logistics analysis, 

forecast modeling, and future transportation infrastructure planning. 

1.1  VEHICLE IDENTIFICATION OVERVIEW 

The main component of the proposed route monitoring system is an 

Automated Vehicle Identification (AVI) subsystem. AVI is the application of 

sensor technologies to automatically identify a vehicle of interest. It may be 

described as containing three components: the sensor, a signal processing 

device, and a data processing device. The sensor detects the passage or 

presence of a vehicle or its axles. The signal processing device typically 

converts the sensor output into an electrical signal. The data processing device 

usually converts the electrical signal to a unique signature of the vehicle to be 

stored in a dataset for later retrieval. A sensor is a key component of any AVI 

system. Depending on the installation location, sensors are categorized into 

two types, intrusive and non-intrusive [2]. Intrusive sensors are those that 

require the installation of the sensor directly onto or into the road surface, 

including inductive loops [3], magnetometers [4], microloop probes [5], 

pneumatic road tubes [6], piezoelectric cables [7], and other vehicle sensors. 

On the other hand, non-intrusive sensors are mounted overhead or on the side 
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of the roadway. The video cameras, microwave radars, active and passive 

infrared sensors, and ultrasonic sensors fall in this category [8]. Not all 

aforementioned sensors can yield an accurate signature for vehicle 

identification. Video cameras that naturally gather a large amount of useful 

information potentially provide an ideal non-intrusive method for accurate 

vehicle identification. Even though Radio Frequency IDentification (RFID) 

based systems [9] are well-studied and can generally yield even higher 

identification accuracy, its use is restricted to a vehicle with a pre-installed tag. 

This greatly reduces the applicability of RFID based system for non-intrusive 

traffic monitoring. Moreover, thanks to the wide popularity of camera devices, 

the price of cameras has dropped rapidly while the technology has improved 

significantly in recent years in response to a strong consumer market. We 

envision that this trend will only continue and the cost of the proposed video 

based system will reduce over time. Infrastructure planning can benefit from 

advances in AVI technology, in particular, the video based techniques 

described in this report. 

1.2  MAIN CONTRIBUTION 

In this project, we proposed a video based vehicle identification system to 

track commercial vehicles and their routes through the state. The main 

contributions and accomplishments of our proposed method are in the 

following:  

1. We use video cameras to capture the critical information of 

commercial vehicles for the purpose of vehicle tracking when they 

enter the state, and use additional video cameras to track the routes. 

Using these data, it is possible to record commercial vehicle routes and 

vehicle counts for state highways.  

2. We treat the problem of vehicle identification from different video 

sources as signal reconstruction out of multiple linear regression 
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models, and use rising theories from an emerging signal processing 

area --- compressive sensing to solve this problem. By employing a 

Bayesian formalism to compute the 1l  minimization of the sparse 

weights, the proposed framework provides new ways to deal with 

three crucial issues in vehicle identification: feature extraction, online 

vehicle identification dataset building, and robustness to occlusion and 

misalignment. For feature extraction, we use the simple 

down-sampled features which offer good identification performance as 

long as the features space is sparse enough. The theory also provides 

a validation scheme to decide if an incoming vehicle has been already 

included into dataset. Moreover, by taking the advantages of 

down-sample based features, one can easily introduce features of 

newly entering vehicles into vehicle identification dataset without 

using any training algorithm. Finally, Bayesian formalism provides a 

measure of confidence of each sparse weight.  

3. We conduct extensive experiments on different types of vehicles on 

the interstate highways to verify the efficiency and accuracy of our 

proposed system. The results show that the proposed framework can 

not only handle the route tracking of commercial vehicles, but also 

works well on all kind of vehicles.  

4. Other sensing techniques (such as bluetooth and automatic license 

plate recognition) have also been studied. Some preliminary tests 

have been made to estimate the possible performance increase 

analytically if such modules are available. Moreover, a detail literature 

study has been employed to investigate the current ALPR technology.  

5. The active server model is proposed. We have laid out the appropriate software 

model if the current module is to be incorporated into existing software 

framework (for example, the state traffic tracking system) in the future. 
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1.3  REPORT OUTLINE 

This report is organized as follows. In Chapter 2, we explain the architecture of 

our proposed system. The video based vehicle identification via sparse 

representation and Bayesian formalism is presented in Chapter 3. Analysis and 

results are presented in Chapter 4. Cost information is given in Chapter 5 and 

in Chapter 6, we present a detail identification example. Chapter 7 we draw the 

concluding remarks. Finally, the appendices are given to summarize literature 

research for license plate detection technologies and software design concepts 

expected to be applied for full-scale deployment of the proposed technologies. 
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CHAPTER 2  

SYSTEM ARCHITECTURE 

In this section, we will introduce the architecture of our proposed vehicle 

identification system. First, the system overview is presented. Then the details 

of each system component are described in the following section. Finally, the 

process flow and development environment are explained in detail 

respectively. 

2.1  SYSTEM OVERVIEW 

Our commercial vehicle identification system is able to detect, track, and 

identify each commercial vehicle, and transmit vehicle information to a service 

center for further route tracking and other traffic monitoring tasks. The system 

includes three main components: the sensing stations, the service center, and 

the clients. The sensing stations mainly gather the vehicle information through 

video cameras. To further improve the identification accuracy, we propose to 

include an automatic bluetooth reader (ABR) and an automatic license plate 

reader (ALPR) as optional components (as shown in Figure 1). And we 

designate this system CBL, short for Camera, Bluetooth, and ALPR. The CBL 

can acquire video of traffic from video cameras, which will be further processed 

for vehicle detection, tracking, identification, and sample training; it can also 

capture Bluetooth device information carried on-board vehicles via any active 

Bluetooth device; it can capture images of vehicles, and identify the license 

plate numbers by character recognition in the ALPR. In addition, there are 

several CBL systems, and they are parallel to each other, as shown in Figure 2. 

This setup is used for data training and testing: one CBL can be used to gather 

training samples while another CBL can be used to employ the identification 

algorithm with the training dataset acquired from the previous CBL device, and 

vice versa. The service center component, the most critical part, collects the 
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data from CBL stations, and employs our vehicle identification algorithm to 

achieve the identification results. The clients are terminals that query the 

identification results from the service center and produce reports of desired 

statistics and routing information. 

 

Figure 1. Proposed vehicle identification system, which include video camera, 

Bluetooth, and ALPR  

 

 

Figure 2. System Setup 
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2.2  DETAILED DESCRIPTION FOR SYSTEM COMPONENTS  

In this section, the system components, including digital video camera, ABR, 

and ALPR, are described in terms of their properties. 

 

2.2.1  Video Capture Component 

As the key component of the CBL system, the video camera captures a large 

amount of the traffic information including environment conditions, 

illumination conditions, vehicle information such as color, shape, speed, and 

size. The cameras will be setup along the side of highway, they should be 

reliable and network accessible. The video cameras should be of high 

resolution, high speed, and real-time color web cameras. We propose to use 

Axis 223M network cameras, as shown in Figure 3 and Figure 4. They have 

many advantages: such as robust, wide range of temperature operation, day 

and night functionality, Mega-pixel resolution, and ease of installation. A 

typical frame from the video cameras is shown in Figure 5. We find this frame 

size captures environment and traffic information well. The web cameras can 

be easily accessed via the Internet as shown in Figure 6. These video cameras 

capture highway traffic videos at different locations, and the videos are 

transmitted to the service center for further processing. The data captured 

from each video camera can be used as a database for identification, and each 

record of the database can be used as the input for performing vehicle 

identification tasks. On the other hand, for route tracking of commercial 

vehicles, we will setup our systems among different highway routes. Therefore, 

the system requires several video cameras together. 
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Figure 3. Video camera I 

 

 

Figure 4. Video camera II 
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Figure 5. An example of video frame 

   

 

 

Figure 6. An example of video interface 
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 2.2.2  Bluetooth Detection Component (Optional) 

The Bluetooth detection component is used to provide additional supporting 

information from the vehicles on-board devices to help our system identify any 

specific vehicle. The Bluetooth devices consist of cellphones, headsets, laptops, 

and other electronic devices with Bluetooth capability. Once any vehicle passes 

by and is carrying a Bluetooth enabled device, the ABR captures Mac address 

and time interval and other information which can be applied to detect and 

identify that vehicle. Figure 7 shows the sample data that captured by the ABR. 

    The ABR in our CBL component runs the Fedora 2.6 operating system, the 

processor is a VIA Eden 1.2GHz, memory of DDR 533 1GB, and hard drive of 

160G. see Figure 8 and Figure 9. 

 

 

 

Figure 7. Recorded data from ABR 
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Figure 8. Automatic Bluetooth reader 

   

 

 

Figure 9. More details about ABR 
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2.2.3  License Plate Detection Component (Optional) 

The ALPR (PIPS P372) used in our system is shown in Figure 10, which is 

manufactured by PIPS technology. By using strong infra-red illumination, it 

recognizes the license plate under a variety of lighting condition. In Figure 11, 

it demonstrates that the system works even under strong sunlight or in 

darkness. Figure 12 illustrates the vulnerability of the license plate recognition 

system that false and no-read images may occur. We suspect that alignment 

could be a culprit of the inability to capture the license plate. However, even 

under perfect alignment, an occlusion of the license by another vehicle can 

occur under heavy traffic. It is hence important to be able to identify a vehicle 

using other characteristics such as color, size, and shape. 

 

 

 

  

Figure 10. The license plate device 
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Figure 11. A view of the vehicle cab and license plate is shown in the upper 

photos for one vehicle and middle photos for another vehicle with lots of sun 

glare. The Infrared camera technology is very capable of eliminating sun glare 

to render a usable image. Nighttime images are also possible using the 

Infrared camera technology as show in lower photos. 
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Figure 12. Examples of the unsuccessful license plate recognition. 
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2.3  PROCESS FLOW 

In this section, we describe the process flow for the CBL stations used for 

vehicle identification, see Figure 13. 

    Each CBL station mainly consists of three parts : video camera, ABR, and 

ALPR. The main job of a CBL station is to collect data from the above three 

parts and send this data to the service center for further processing, eg. the 

i -the sensing station )(iCBL  in Figure 13. At the service center, the data from 

the video camera is processed by the video processor module, and this process 

correlates a vehicle identification with the optionally supportive data from the 

ABR and ALPR. Here we take the data sent from the i -th CBL station as an 

example. At the video processor module, the first process is to perform blob 

detecting and blob tracking to get a unique vehicle ID, and saves it into a 

database for CBL station with index i . Then the obtained vehicle information of 

)(iCBL  will be compared with other CBL station databases )(,(1), mCBLCBL …  

except )(iCBL , where m  denotes the total number of CBL stations. If a 

corresponding ID is found in ijjCBL ≠),( , it will report that this vehicle was 

captured in the j -th CBL station, otherwise, it will report 1− , which means 

that this vehicle has not been captured by any CBL stations before. 

To improve the system accuracy, we introduce the ABR and ALPR functions 

into the system. For the data sent from ABR (including Mac address, device 

type, and time) and ALPR (including license plate and time) in )(iCBL , similarly, 

the service center will save these records in a bluetooth database and a license 

plate database, respectively. Then for both databases, ABR, and ALPR, the 

service center will compare the current record from )(iCBL  with other 

ijjCBL ≠),(  in the database, respectively. If a corresponding record is found in 

ijjCBL ≠),( , it will report the corresponding record with a time stamp, 

otherwise, it will give a void report. With the supportive information from ABR 
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and ALPR, the accuracy of the proposed vehicle identification system can be 

increased. Finally, the service center will report the identification result by 

combining the information from each component. Table 1 gives the final 

reports of all kinds of combinations based on the video processor and the 

additional ABR and ALPR. 

 

 

Figure 13. The Process flow. 
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Table 1. Final reports for service center   

Video processor ABR ALPR Final report 

T T T T 

T W T T 

T T W T 

T W W T 

W T T T 

W W T T 

W T W T 

W W W W 

T: a corresponding vehicle ID or time stamp is found, and the time stamps 
from different components match each other; 

W: a corresponding vehicle ID or time stamp is not found, or the time stamps 
do not match each other 

   

2.4  DEVELOPMENT ENVIRONMENT 

In this section, we will introduce the software development stage of our 

proposed system, which includes the development Operating System (OS), 

Language, Tools, dependent Libraries, and database. 

    Our proposed system is mainly developed under the Windows operating 

system and tested under both Windows (Windows XP/Windows Vista/WIndows 

7) and Linux (Ubuntu/Fedora) operating systems to ensure the compatibility of 

the system. 

    We use three different programming languages, C++, Java, and Matlab to 

develop the proposed system, since they all support cross-platform operation.  

1. The video capture, blob detection, and tracking modules are 

implemented by using OpenCV 2.1 library with C++ language under 

Microsoft Visual Studio 2008. Here, OpenCV is a free cross-platform 

computer vision library originally developed by Intel. It focuses mainly 
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on real-time image processing, which includes the basic image/video 

processing APIs, such as video capture from network camera/video file, 

blob detection/tracking etc. Then the developers can build their own 

processing modules very efficiently. 

2. The GUI part of the proposed system is implemented mainly by using 

the Java platform under NetBeans 6.9 IDE. The Java language offers 

many outstanding characteristics, such as portability, cross-platform, 

object-oriented programming, easy GUI design, and so on. To achieve 

the portability and cross-platform operation, the developers use the 

Java development Kit (JDK) and end-users commonly use a Java 

Runtime Environment (JRE) installed on their own machine. 

3. The video based identification algorithm is implemented by using Matlab 

2009b since Matlab has the following advantages: Matlab is a numerical 

computing environment, which is developed by MathWorks. Matlab 

allows fast matrix manipulations, visualization of data, implementation 

of algorithms, creation of user interfaces, and interfacing with programs 

written in other languages, such as Java, C++, etc. 

4. The data representation, storage, and query in the proposed system are 

implemented by using folder based image datasets (for detected vehicle 

blobs and license plate images) and the SQLite database (for captured 

Bluetooth data). 
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CHAPTER 3  

VIDEO BASED VEHICLE IDENTIFICATION   

3.1  BACKGROUND 

For vehicle detection from a video or image sequence, the most obvious 

approach has been first to compute the stationary background image, and then 

identify the moving vehicles as those pixels in the image that differ 

significantly from the background, which is named background subtraction 

[10]. In earlier work in the “Road watch” project at Berkeley, it showed that 

background subtraction can provide effective locating and tracking results for 

moving vehicles [11]. However, traffic shadows cause serious problems when 

doing subtraction and slow moving or stationary traffic is difficult to detect. 

This led to the emergence of the adaptive background methods. A standard 

adaptive method can create a background approximation which is similar to 

the current static scene and is adaptive to illumination changes, slowing 

moving traffic. The Gaussian Mixture Model (GMM) is also very effective for 

adaptive traffic detection. It was first used as a single Gaussian model for 

real-time tracking of the human body in [12], then proposed for background 

subtraction in [10]. One of the most famous approaches for updating GMM is 

presented in [13] and further elaborated in [14]. According to the computer 

vision literature, vehicle tracking from a video or image sequence can be 

classified into four categories [8]. First is model based tracking: the three 

dimensional model-based vehicle tracking system focuses on recovering 

trajectories and models with high accuracy [15], [16]. However, it is 

unrealistic to build detailed geometric models for all vehicles on the roadway. 

Second is region based tracking: this approach detects a connected region in 

the image, namely a blob, associated with each vehicle, and tracks it over time 



20 

 

using different algorithms, such as cross-correlation [17], but this approach is 

not fit for congested traffic conditions. The third category is active contour 

based tracking: this approach builds a bounding contour of the vehicle and 

keeps updating it. Koller et al. [18] was based on this approach. But occlusion 

and initialization is still the difficult part of the problem. And the fourth 

category is feature based tracking: instead of tracking each vehicle as a whole, 

this approach tracks sub-features and shows effective tracking results with 

partial occlusions [8]. However, grouping features is still a difficult problem for 

this approach. For the vehicle identification problem, the state of the art 

methods can be mainly classified into two groups: template based and 

appearance based methods. The template based methods predefine patterns 

of vehicle, and perform correlation between the image and the template. 

Handmann et al. [19] proposed a U shaped template based on the front or rear 

view of each vehicle. These appearance based methods learn the 

characteristics of vehicle appearance from a set of training images, and each 

training image is represented as a set of local and global features. Wu and 

Zhang [20] used standard Principal Components Analysis (PCA) for feature 

extraction and the nearest neighbor classifier, reporting an 89 percent 

accuracy for vehicle detection. In [21], PCA was used together with Neural 

Networks (NNs) for vehicle recognition. Z. Sun at el. [22] employed Gabor 

filters for feature extraction and Support Vector Machines (SVM) to classify 

vehicles. Viola et al. [23] had introduced a rapid object detection scheme 

based on a boosted cascade of simple Haar like features. The Scale Invariant 

Feature Transform (SIFT) by Lowe [24] provided distinct features for object 

recognition. Recently, by using sparse representation, Wright et al. proposed a 

face recognition algorithm [1], which offers very competitive performance for 

face recognition. Based on the idea of sparse representation for objection 

classification and identification, we proposed a video based vehicle 

identification framework for this project. 
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3.2  VEHILCE TRACKING AND DETECTING 

In this section, we will introduce our proposed vehicle tracking scheme. The 

four main components in our vehicle tracking scheme is shown in Figure 14, 

which contains Foreground/ Background (FG/BG) detecting, Blob detecting, 

Blob tracking, and moving direction and speed detecting. We will discuss the 

details of each component in the following subsections. 

  

  

Figure 14. The workflow of the proposed vehicle tracking scheme   

 

 

3.2.1  Foreground / Background Detecting 

FG/BG detection is the first and most important step in our vehicle tracking 

scheme, since the accuracy of FG/BG estimation affects all subsequent steps. 

    Many FG/BG detection methods have been proposed in [25], [26], [27], 

[28], [29], [30], [12], [10], [13]. In [25], Ridder et al. use a Kalman Filter to 

model each pixel, which made their algorithm robust to light variance. 

However, Ridder's method does not consider adaptive thresholding. Pfinder 

[12] implemented a multi-class statistical model for the tracked objects, where 

the background is modeled as a single Gaussian per pixel. Nevertheless, this 

method is not working well for outdoor scenes. Recently, a pixel-wise 

framework for vehicle detection is proposed by Rriedman and Russell [10]. 

However, the pixels of this system were constrained by three separated 

predetermined distributions. 
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    In this project, we adopt the approach proposed by Stauffer et al. in [13], 

which provides an adaptive background mixture model for real-time tracking 

by modeling the values of any pixel as a mixture of Gaussians. This method is 

robust for lighting changes, tracking through cluttered regions, slow-moving 

objects and so on. In Figure 15 (a), we present a video frame which contains a 

moving vehicle. Figure 15 (b) shows the background subtraction results by 

using the algorithm in [13]. 

 

 

 

Figure 15. The example of the vehicle tracking algorithm.   
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3.2.2  Blob Detecting 

Blob detection is employed to detect any newly entering object in each frame 

using the output from the FG/BG estimation module. Our blob detector is 

implemented based on [31]. First, neighboring pixels of the FG will be 

connected to generate blobs. Then for each successive frame, each blob is 

tracked. If a detected blob is not found previously, it will be added as a new 

blob in a list. 

3.2.3  Blob Tracking 

The blobs that have been found in the previous step will be traced by the blob 

tracking component. It consists of two subcomponents: one subcomponent 

creates a confidence map for the current frame based on the color histogram of 

the target object in the previous frame, and utilizes the mean shift algorithm 

[32] to find a peak in the confidence map close to the old position of the object; 

the other subcomponent uses a Kalman filter to predict the position of the blob 

in the next frame. 

3.2.4  Moving Direction And Speed Detecting 

The moving direction and speed detecting is accomplished by using optical flow 

estimation [33], which tries to calculated the motion between two video 

frames at times t  and τ+t . In our scheme, we use the blobs with the same 

index in different video frames to calculate the optical flow. In Figure 15 (a), 

the red arrow indicates the moving direction, and the length of the arrow 

indicates the speed of the vehicle, where a longer arrow means a faster moving 

vehicle. 

3.2.5  Reduce False Positive Detection And Tracking 

The aforementioned algorithms offer high sensitivity for blob detecting and 

tracking, however, false positive rate could be high due to clutters from the 
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motions of leaves and grass. Moreover, we may only be interested in one 

direction of the traffic flow. To tackle these issues, we utilize the following 

filters to exclude these unwanted blobs.   

1. Blob histogram (BH) filter: excludes blobs, where the number of 

observations from different video frames for each given blobs ID is less 

than BHτ  times, where BHτ  is a predetermined threshold.  

2. Motion distance (MDs) filter: excludes blobs, whose moving distance are 

less than a given threshold MDsτ  (in pixels).  

3. Motion direction (MDr) filter: excludes blobs, whose motion direction are 

not the same as the pre-assigned direction MDrτ  (right, left, up, down 

and etc.). 

3.3 VEHICLE IDENTIFICATION VIA SPARSE REPRESENTATION 

AND BAYESIAN FORMALISM 

A basic problem in vehicle identification is to determine if a newly entering 

vehicle has already been registered in a database or not, and to find a 

corresponding vehicle ID if such record exist. The core idea of the proposed 

vehicle identification algorithm is based on sparse representation, where 

similar idea was used in [1] for face recognition. 

3.3.1  Sparse Representation Of A Vehicle 

Before generating a sparse representation for a vehicle and finding its 

corresponding vehicle ID, we will first arrange the database into matrices, 

which is built using labeled training samples from M  different vehicles. Here 

we assume that ik  denotes the number of hw ×  training images for the i -th 

vehicle ID, where Mi ,1,= … , and Mkkkk ⋯++ 21=  denotes the number of 

images in the database. Then, we reshape each hw ×  image into a column 

vector c
R∈ν , where whc = ; the ik  training images from the i -th vehicle ID 
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constitute the columns of a matrix ikc

ikiiii

×∈Φ R],,,[= ,,2,1 ννν … ; all k  images from 

the database are combined to form a new matrix 

kc

MkMM
×∈ΦΦΦΦ R],,,[=],,,[= ,1,21,121 ννν …… . 

    For a newly entering vehicle cu R∈ , if sufficient training samples in the 

database share the same feature as the incoming vehicle, (e.g. it happens 

when the incoming vehicle was captured previously, let say, with a vehicle ID 

i ), then the vehicle can be approximately represented as the linear 

combination of the training samples in iΦ   

 ,== ,,,2,2,1,1 ikiikiiiiiiy νθνθνθθ +++Φ …  (1) 

where T

ikiii ],,,[= ,,2,1 θθθθ …  and iji kj ,1,2,=,, …R∈θ . 

    However, we do not know the identity of the incoming vehicle at the 

beginning. Fortunately, we can instead represent the incoming vehicle cy R∈  

using the entire set of images in the database with relatively small increase in 

computation complexity. The linear combination of all the training samples is 

written as  

 ,,0],0,,,,,0,][0,,,,[== ,,2,121
T

ikiiiMsxy ………… θθθΦΦΦΦ  (2) 

where with a high probability, kT

ikiiisx R∈,0],0,,,,,0,[0,= ,,2,1 ……… θθθ  is a 

coefficient vector which just has nonzero entries for those associated with i -th 

vehicle ID. 

    In order to find sx  which can accurately determine the identity of the 

incoming vehicle, we need to solve the linear equation xy Φ= . Nevertheless, 

this is a underdetermined equation, and it does not have a unique solution sx . 

In particular, the problem could be solved as the following optimization 

problem.  

 .=tosubjectmin=ˆ
2

yxxargx Φ  (3) 

The optimization problem can be solved easily, but the solution will not be 
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sparse. In other words, the nonzero entries of the solution will spread over 

many class IDs. This makes the later identification steps difficult to succeed. 

Instead, we could like to find the sparsest solution, ideally, by solving 0l -norm 

minimization: 

 .=tosubjectmin=ˆ
0

yxargx Φx  (4) 

Unfortunately, the above optimization problem is a difficult combinatory 

problem, and is NP-hard. However, if sx  is sparse enough, the 1l -norm 

minimization problem can provide an equivalent solution with an 0l -norm 

solution: 

 .=tosubjectmin=ˆ
1

yxargx Φx  (5) 

    In general, measurement data may be noisy, so y  may not be 

represented as the sparse combination of training samples exactly. Thus Eq. 

(2) will be rewritten as:  

 ,= zsxy ϒ+Φ  (6) 

where c
z R∈ϒ  is noise and has a bounded energy ε<

2zϒ . Then the 

1l -minimization problem is modified as follows:  

 .tosubjectmin=ˆ
21

ε≤−Φ yxargx x  (7) 

3.3.2  Sparse Solution Via Bayesian Formalism 

To find the sparse solution for the 1l -norm minimization problem, numerous 

methods have been proposed, such as Matching Pursuit (OMP) [34], LASSO 

[35], Interior-point Methods [36], SAMP [37], and Gradient Method [38]. 

However, above methods only provide approximate sparse solutions but do 

not tell how likely the given solutions are optimum. Therefore, we will use 

Bayesian formalism instead which returns both a sparse solution x  and the 

probability information indicating the uncertainly of the solution from the 

actual sparse x . Our approach is based on [39] by extending Tipping's 

Relevance Vector Machine (RVM) theory [40]. 



27 

 

    First, we assume that x  is the sum of two parts bx  and ex  (so, 

eb xxx += ), where k
bx R∈  is the vector composed of nonzero entries only at the 

L  largest coefficients of x , and k
ex R∈  is the vector composed of nonzero 

entries only at the rest of the coefficients. Moreover, since we assume that 

measurements can be noisy as in Eq.(6), the vector corresponding to a vehicle 

y  is rewritten as:  

 ϒ+Φϒ+ϒ+Φϒ+Φ+Φϒ+Φ bzebzebz xxxxxy ====  (8) 

where ee xΦϒ = . Using Central-Limit Theorem [41], we assume that both eϒ  

and zϒ  are zero mean and approximately Gaussian distributed, then 

ze ϒ+ϒϒ =  can be approximated as a Gaussian noise with zero mean and 

unknown variance 2σ . Then the Gaussian likelihood is given by  

 ).
2

1
(exp)(2=),|(

2

2
/222

b
c

b xyxyp Φ−−−

σ
πσσ  (9) 

    Given Φ  and y , the problem now is to estimate the sparse vector bx  and 

the noise variance 2σ . By Bayes' rule, we have  

 .
)(

),(),|(
=)|,(

22
2

yp

xpxyp
yxp bb

b

σσσ  (10) 

    Note that bx  is sparse and can be modeled by a Laplace distribution [42], 

[43]. However, the Laplace prior is not conjugate to the Gaussian likelihood, 

and thus the inference problem can not be written in closed-form [42], [44]. 

Thus instead of Laplace prior, we will perform a hierarchical sparseness prior 

[40] which has similar properties as the Laplace prior and thus allows 

convenient conjugate exponential analysis on bx . 

    To perform the hierarchical sparseness prior, we define a zero mean 

Gaussian prior distribution on bx  with:  

 ),0,|(=)|( 1

1=

−∏ iib

k

i
b xNxp αα  (11) 

where k
R∈α  is hyperpriors, which themselves are modeled by Gamma 
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distributions 

 ).,|(=),|(
1=

babap i

k

i

αα Γ∏  (12) 

    Based on Eq.(11) and Eq.(12), the conditional probability bx  given a  and 

b  is obtained by marginalizing over the hyper-parameters α :  

 .),|()0,|(=),|( 1

0
1=

iiiib

k

i
b dbaΓxNbaxp ααα −∞

∫∏  (13) 

where the integral iiiib dbaxN ααα ),|()0,|( 1

0
Γ−∞

∫  obeys a Student-t distribution 

[45]. The Student-t distribution has a strong peak at 0=bx  with appropriate 

values of a  and b , so that most entries of bx  are zeros with the prior 

distribution Eq.(13). 

    Moreover, we model the inverse of the noise variance 2= −σβ  with a 

Gamma distribution:  

 ,),|(=),|( dcdcp ββ Γ  (14) 

where c  and d  are also hyperpriors. Here we fix the value of the parameters 

cba ,,  and d  to zero, and thus α  and β  are uniform hyper-priors over a 

logarithmic scale. 

    Now, based on the priors which have been defined above, the posterior can 

be decomposed as:  

 ).|,(),,|(=)|,,( 222 ypyxpyxp bb σασασβ  (15) 

    For the first term ),,|( 2σαyxp b , since we can compute the integral 

bbb dxxpxypyp )|(),|(=),|( 22 ασσα ∫  based on Eq.(9) and Eq.(11), the posterior 

distribution of bx  can be expressed analytically as:  

 







 −Σ−−Σ= −−+− ),()(

2

1
exp||)(2

),|(

)|(),|(
=),,|(

11/21)/2(

2

2
2

µµπ

σα
ασσα

b
T

b
k

bb
b

xx

yp

xpxyp
yxp

 (16) 

where the covariance and mean of the posterior distribution are  
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,=

,)(=
2

12

y

A
T

T

ΣΦ
+ΦΦΣ

−

−−

σµ
σ

 (17) 

respectively, with ),,,(= 10 kdiagA ααα … . 

    For the second term )|,( 2 yp σα , maximizing )|,( 2 yp σα  is the same as 

maximizing )()(),|( 22 σασα ppyp . Since )(αp  and )( 2σp  are uniform 

hyper-priors, we only need to maximize the term ),|( 2σαyp , which is given by:  

 







 ΦΦ+−ΦΦ+=

=

−−−−−

∫

yAIyAI

dxxpxypyp

TTTk

bbb

1121/212)/2(

22

)(
2

1
exp||)(2

)|(),|(),|(

σσπ

ασσα
 (18) 

where this quantity is called marginal likelihood, and its maximization is known 

as the type-II maximum likelihood. The associated maximization problem 

becomes one of seeking the hyperpriors α  and 2σ . Estimation of these 

hyperpriors can be achieved by employing the Type-II maximum likelihood 

method which is also referred to as the “evidence for the hyper-parameters” 

[40]. 

3.3.3  Identification Based On Sparse Representation 

Before identifying an incoming vehicle, first, we need to use the information of 

sparse representation to decide if the test object is a vehicle, and if the 

entering vehicle corresponds to one of the vehicle IDs in the dataset. 

    For each estimated sparse representation x̂ , the entries of coefficient 

vector x̂  distribute in two different ways: a). most nonzero entries 

concentrate on one vehicle ID, and b). all nonzero entries spread widely among 

multiple vehicle IDs or the entire database. The first case implies that the 

incoming vehicle is likely to correspond to the vehicle ID on which non-zero 

entries concentrate; whereas the second case indicates that the feature 

information of the incoming vehicle is not in the database. Based on the above 

observation, we adopt the sparsity concentration index (SCI) to determine if a 

vehicle has been captured before or not [1]. The SCI of a coefficient vector 
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kx R∈  is defined as 

 [0,1],
1

1/)(max
=)( 11 ∈

−
−⋅

M

xxM
xSCI ii δ

 (19) 

where k
i x R∈)(δ  is a vector whose coefficients are only associated with the 

i -th vehicle ID of vector x . 

    Hence, for an estimated sparse representation x̂  solved in Section 3.1, if 

1=)ˆ(xSCI , nonzero entries only concentrate on one vehicle ID, and if 0=)ˆ(xSCI , 

nonzero entries are spread uniformly among all classes. Given a threshold 

(0,1)∈ε , if ε≥)ˆ(xSCI , the test vehicle will be considered as a “known” vehicle, 

otherwise an “unknown” vehicle will be reported. For the former case, we still 

need to determine the identity of the vehicle. We can achieve this by 

comparing the residual errors corresponding to different vehicle IDs. More 

precisely, denote )ˆ(=ˆ 1xy ii δΦ  which is the approximate representation 

obtained by using only the entries associated with the i -th vehicle ID. 

Intuitively, we assign the incoming vehicle y  to the ID with the best 

approximation. This corresponds to the minimum residual error between y  

and iŷ  given by 

 
21)ˆ(=)(min xyyr iii δΦ−  (20) 

    Now based on the sparse representation, SCI method for validation, and 

residual identification, the algorithm procedure for vehicle identification can be 

summarized in the following:   

1. Input: an arranged matrix of dataset with M  vehicles 

kc
M

×∈ΦΦΦΦ R],,,[= 21 … , an incoming vehicle represented by cy R∈ , 

error tolerance 0>ε  and SCI threshold (0,1)∈ε .  

2. Normalize the columns of Φ  to have unit 2l -norm.  

3. Solve the 1l -minimization problem:   

ε≤−Φ
21

tosubjectmin=ˆ yxxargx x   
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4. Compute [0,1]
1

1/)(max
=)ˆ( 11 ∈

−
−⋅

M

xxM
xSCI ii δ

. If ε≥)ˆ(xSCI , go to step 5, 

otherwise return a report that the incoming vehicle is not in the 

dataset.  

5. Compute the residuals errors 
2

)ˆ(=)( xyyr ii δΦ− , for Mi ,1,= … .  

6. Output : identity )(min=)( yrargy ii .  

3.4  IDENTIFICATION BASED ON MULTIPLE FRAMES 

As stated in Section 3.3, for further identification, )ˆ(xSCI  works like a filter for 

each frame to sift through any unknown vehicle. However, in the vehicle 

identification problem, sometimes the constraint ε≥)ˆ(xSCI  can not 

differentiate the known and unknown vehicle accurately. Fortunately, it is 

possible to take advantage the information from multiple frames to further 

improve the identification accuracy. In this project, we propose an additional 

rule using the identification concentration index (ICI), which is based on 

multiple frame validation, to improve the vehicle identification accuracy. 

    Here we assume that there are F  number of frames which include an 

incoming vehicle and Fd R∈  is a vector to save the identified IDs from F  

frames. An average )ˆ(xSCI  is obtained by )ˆ(
1

=)ˆ(
1= l

F

l
xSCI

F
xSCI ∑  and assuming 

that out of the F  frames, D  number of unique identified IDs is found. Then, 

considering the information from all the F  frames, the proposed ICI is defined 

as: 

 [0,1],
1

1))/((max
=)( 0 ∈

−
−⋅

D

ddD
dICI jρ

 (21) 

where )(djρ  counts the existing number of j -th unique ID in d , Dj ,1,= … ; if 

1=D , 1=)(dICI , since there is only one vehicle ID. Moreover, if 1=)(dICI , F  

frames only concentrate on one vehicle ID, and if 0=)(dICI , F  frames are 
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spread among all D  number of IDs. Then given a threshold (0,1)∈ζ , an 

incoming vehicle is considered as “known” if ζ≥)(dICI , otherwise it is 

considered as “unknown”. 

    Now we will introduce how to combine SCI and ICI to increase the accuracy 

of vehicle identification. Based on the previous algorithm for vehicle 

identification and the proposed ICI, the algorithm procedure can be rewritten 

as follows:  

1. Input: an arranged matrix of dataset with M  vehicles 

kc
M

×∈ΦΦΦΦ R],,,[= 21 … , an incoming vehicle cy R∈ , error tolerance 

0>ε , SCI threshold (0,1)∈ε , and ICI threshold (0,1)∈ζ .  

2. Normalize the columns of Φ  to have unit 2l -norm.  

3. For all F  frames which include an incoming vehicle, solve the 

1l -minimization problem: ε≤−Φ
21

tosubjectmin=ˆ llllxl yxxargx , 

Fl ,1,= … .  

4. Compute [0,1]
1

1/)(max
=)ˆ( 11 ∈

−
−⋅

M

xxM
xSCI llii

l

δ
 for each frame, and 

then get )ˆ(
1

=)ˆ(
1= l

F

l
xSCI

F
xSCI ∑  for F  multiple frames.  

5. Compute [0,1]
1

1))/((max
=)( 0 ∈

−
−⋅

D

ddD
dICI jρ

.  

6. If ε<)ˆ(xSCI , and ζ<)(dICI , where (0,1)∈ε  and (0,1)∈ζ , return a 

report that the incoming vehicle is not in the dataset, otherwise go to 

step 7. Note that the value of ε  and ζ  are tuned by using the 

algorithm of SVM.  

7. Compute the residuals errors 
2

)ˆ(=)( xyyr ii δΦ− , for Mi ,1,= … .  

8. Output : identity )(min=)( yrargy ii .  
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CHAPTER 4  

ANALYSIS 

In this Chapter, we present the experimental results based on the proposed 

system setup and algorithms for vehicle identification. In the experiment, we 

use two video cameras ( 1C  and 2C ) to capture video data from highway I-44 in 

Tulsa.   

 

  

Figure 16. The vehicle dataset sample   

 

4.1  EXPERIMENT SETUP 

First, we separate the video data captured from two cameras into two parts, 

one for training and the other for testing. During the training phase, we use the 

video from 1C  to build the vehicle database, which included 291 captured 
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vehicles and in total 13,931 images (about 48 frames per vehicle). Then 

another 601 captured vehicles from 2C  (about total 23,920 images), where 

291 vehicles were also captured by 1C  and the remaining 310 vehicles were 

not, were registered into the database using our proposed algorithm. Then the 

SCI and ICI values are obtained after the registration, and a ground truth is 

generated manually. This information is used to train the SVM classifier, which 

will be used to identify unknown vehicles based on SCI and ICI values. During 

the testing phase, we use another 10 minute length of video from 1C  to build 

the vehicle database, which includes 13,573 images for 287 vehicles. Then, 

another 23,838 images for 608 vehicles from 2C  are used to test the 

identification accuracy of our proposed algorithm. In this testing phase, 287 

vehicles appeared in the database, and 321 vehicles were out of the database. 

 

 

 

Figure 17. Blob detection result I 
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Figure 18. Blob detection result II 

   

 

4.2  Vehicle Tracking And Detecting 

In Figure 17 and Figure 18, we present the blob detection results by using our 

proposed vehicle detecting and tracking algorithms. The green box in the video 

frame indicates the location and the size of a moving vehicle. Then each 

detected blob will be saved into the database for registration, see Figure 16. In 

this experiment, we achieved more than 90% accuracy of the blob detection. 
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Figure 19. Trained SVM classifier using SCI and ICI, where 1 indicates 

correctly identified vehicles and 0 indicates incorrectly identified vehicles   

 

 

Figure 20. Classification performance by using different kinds of data for the 

SVM classifier, such as, SCI only, ICI only, and the combination of SCI and ICI 
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4.3  Video Based Vehicle Identification 

In this section, results of the SVM classifier, identification with different feature 

sizes, and a detailed example of vehicle identification are presented. 

4.3.1  SVM Classifier 

In our experiment, we applied a sparse representation-based Identification 

(SRI) algorithm to each testing vehicle image by solving the optimization 

problem in Eq. (7) with the RVM. Two dimensional training data is used in the 

SVM classifier which includes the SCI and the ICI. Moreover, a 4th order 

polynomial kernel function is used in the SVM classifier. Figure 19 shows the 

trained SVM classifier using the manually labeled data (SCI and ICI) obtained 

from the training part, where the (red) cross means that vehicles only 

appeared in both 1C  and 2C  cameras, the (green) star means that vehicles 

only appeared in the 2C  camera, and the solid (black) line is the classification 

boundary obtained from SVM classifier. 

We compare the classification performance by using different kinds of data 

for SVM classifier, such as, SCI only, ICI only, and the combination of SCI and 

ICI. Before showing the results, we will define some terminologies first. In this 

project, “ acceptanceof# ” is the number of vehicles that were accepted by the 

SVM classifier and “ rejectionof# ” is the number of vehicles that were rejected 

by the SVM classifier. The identification accuracy (IA) is defined as 

databasetheinvehiclesof#

reportspositiveof#
, where “ databasetheinvehiclesof# ” means vehicles 

appeared in both 1C  and 2C  cameras. The false positive rate (FPR) is defined 

as 
databasetheinvehiclesof#

reportspositivefalseof#
. The false negative rate (FNR) is defined as 

databasetheofoutvehiclesof#

reportsnegativefalseof#
, where “ database  theofout   vehiclesof# ” means 

vehicles only appeared in 2C  camera (see Table 4 as an example). Figure 20 
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shows IA, FPR, and FNR by using different kinds of data in the SVM classifier. 

We can see that using ICI in the SVM obtains the best IA and lowest FNR. 

However, the FPR of using ICI is also the highest. Among SCI, ICI, and the 

combination of SCI and ICI, SCI yields the worst performance in terms of 

lowest IA and highest FNR. Now, we introduce the following definitions to 

explain why we use the combination of SCI and ICI in the SVM classifier. The 

relative identification accuracy (RIA) was defined as 
acceptanceof#

reportspositiveof#
. The 

relative false positive rate (RFPR) was defined as 
acceptanceof#

reportspositivefalseof#
. The 

relative false negative rate (RFNR) was defined as 
rejectionof#

reportsnagetivefalseof#
. 

Then, in Figure 21, we can see that the one using the combination of SCI and 

ICI in the SVM classifier yields the best RIA, the lowest RFPR and an acceptable 

RFNR, which means the combination of SCI and ICI can best leverage RIA, 

RFPR, and RFNR. Further, the detailed classification performance datum of 

using SCI, ICI, and the combination of SCI and ICI are listed in Table 2, Table 

3 and Table 4. 

 

Table 2. Identification accuracy using SCI with a feature size of 500    

SP + SVM classifier output with SCI and ICI 

# of acceptance (# of vehicles in dataset) # of rejection (# of vehicles out of dataset) 

208 (287) 400(321) 

# of positive # of false positive # of negative # of false negative 

134 74 306 94 

Identification accuracy False positive rate False negative rate 

46.69% 25.7% 29.28% 
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Table 3. Identification accuracy using ICI with a feature size of 500    

SP + SVM classifier output with SCI and ICI 

# of acceptance (# of vehicles in dataset) # of rejection (# of vehicles out of dataset) 

277 (287) 331(321) 

# of positive # of false positive # of negative # of false negative 

179 98 282 49 

Identification accuracy False positive rate False negative rate 

62.37% 34.14% 15.26% 

  

   

  

Table 4. Identification accuracy using SCI and ICI with a feature size of 500 

    

SP + SVM classifier output with SCI and ICI 

# of acceptance (# of vehicles in dataset) # of rejection (# of vehicles out of dataset) 

248 (287) 360(321) 

# of positive # of false positive # of negative # of false negative 

166 82 298 62 

Identification accuracy False positive rate False negative rate 

57.84% 28.57% 19.31% 
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Figure 21. Relative identification accuracy, relative false positive and relative 

false negative rate by using different kinds of data for the SVM classifier, such 

as, SCI only, ICI only, and the combination of SCI and ICI 

   

 

 

Figure 22. The example of different feature sizes 
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 Table 5. Identification accuracy using SCI and ICI with a feature size of 30 

    

SP + SVM classifier output with SCI and ICI 

# of acceptance (# of vehicles in dataset) # of rejection (# of vehicles out of dataset) 

207 (287) 401(321) 

# of positive # of false positive # of negative # of false negative 

40 167 301 100 

Identification accuracy False positive rate False negative rate 

13.94% 58.19% 31.15% 

  

   

Table 6. Identification accuracy using SCI and ICI with a feature size of 120    

SP + SVM classifier output with SCI and ICI 

# of acceptance (# of vehicles in dataset) # of rejection (# of vehicles out of dataset) 

221 (287) 387(321) 

# of positive # of false positive # of negative # of false negative 

115 106 302 85 

Identification accuracy False positive rate False negative rate 

40.07% 36.93% 26.48% 

  

 

4.3.2  Identification with Different Feature Sizes 

In this section, we compare IA, FPR, and FNR with different feature sizes of 30, 

120, and 500. Here, we implement a down-sampling scheme for each detected 

vehicle to get the feature image. The advantage of using down-sampled 

feature image is that each feature image can be generated independently and 

requires less computation. Figure 22 shows an example of different feature 

sizes. Furthermore, in Figure 23, we can see the IA increases as the feature 

size increases, while the FPR and FNR decrease as the feature size increases. 

Thus, to obtain a higher IA, we need a large feature image, so that enough 
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information of a given vehicle can be provided in the given feature image. 

Moreover, the detailed datum of IA, FPR, FNR with different feature sizes were 

listed in the Table 4, Table 5 and Table 6. 

  

    

Figure 23. Identification accuracy, false positive and false negative rate with 

different feature sizes.   

 

4.4  BLUETOOTH AND ALPR AS SIDE INFORMATION 

FOR IDENTIFICATION 

In this section, the results of using side information from bluetooth and ALPR to 

improve the identification accuracy are presented. We tested the bluetooth 

and ALPR on highway I-44 in Tulsa with four-lanes and two-directions of traffic. 

During a one hour time slot, there were a total of 3568 vehicles passing by our 
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detectors, and 698 bluetooth records were captured. Thus we obtain an 

approximated identification accuracy of using ABR as 19.56%. Moreover, the 

identification accuracy for ALPR is about 32.63%. The accuracy for the ALPR is 

rather low. We suspect that it may be due to malfunction of our equipment. 

Since we already obtained the identification accuracy of the video based 

method, we can conclude that the overall identification accuracy of our 

proposed system is about 77.15%=0.3263)0.1956)(10.5784)(1(11 −−−− , which are 

also listed in Table 7. 
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CHAPTER 5  

COST INFORMATION 

 

The source of matching is listed in the following table. Tulsa Campus Vice 

Provost and two of the co-PIs (Dr. Sluss and Dr. Verma) had allocated $26,348 

for the projects. This had mainly gone to the salary, fringe benefit and tuition 

remission of one of the two graduate assistants. The remaining was used for 

material and supplies, travel expense, and the salaries and benefits of the PIs. 

The School of ECE and the Graduate College had allocated $27,847 and $5,472, 

respectively. The funding from the School of ECE was spent completely on the 

salaries and fringe benefits of the PIs. The funding from the Graduate College 

was used for the tuition remission of the graduate assistants. 
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Tulsa 

Grad 

College 

Dr. 
Sluss 
 

Dr. 
Verma 
(TCOM) 
 

ECE 
 

Grad 
College 
 

OVPR 
 

Totals 
 

Faculty 

Salary 
  $1,000 $20,985   $21,985 

Faculty FB   $327 $6,862   $7,189 

GRA Salary 

(1 GRA 

@$14,400) 

$8,460 $5,000 $940    $14,400 

GRA FB $271 $160 $30    $461 

GRA Tuition- 

15% 
$1,269 $750 $141  $5,472  $7,632 

Travel  $3,000     $3,000 

Material & 

Supplies 
 $1,090 $3,910    $5,000 

IDC on CS      $26,018 $26,018 

TOTAL  

MATCH 
$10,000 $10,000 $6,348 $27,847 $5,472 $26,018 $85,685 

 

Legend: FB--Fringe Benefit; GRA--Graduate Research Assistant; IDC--Indirect 

Cost; CS-- Cost Share; TCOM--Telecommunications; ECE--Electrical and 

Computer Engineering; OVPR--the Office of the Vice President for Research 

The funding from OTC had greatly enhanced the project by doubling the 

available resources. The funding was used to double the time available for the 

PIs and to hired more graduate assistants to work on the project. The OTC 

funding was also be used to cover a part of the material cost and travelling 

expense. 
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CHAPTER 6  

DISCUSSION  

6.1  A DETAILED EXAMPLE OF IDENTIFICATION 

In this section, a detailed identification example using a sparse 

representation-based algorithm is presented. Figure 24 and Figure 25 show 

two correct identification results, where the dataset was built by using the data 

from camera 1 and the data of the testing vehicle was obtained from camera 2. 

In Figure 24, although an occlusion (a pole) exists in the image from the 

dataset, the proposed algorithm can obtain a correct identification result. 

Moreover, Figure 25 shows the case of a correct identification using misaligned 

images from camera 1 (dataset) and camera 2 (testing data). The above two 

cases demonstrate that the proposed algorithm is robust with occlusion and 

misalignment.   

 

Figure 24. An example of correct identification I 
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Figure 25. An example of correct identification II 

   

 

  

Figure 26. An example of incorrect identification 
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Figure 26 shows an incorrect identification result, where the two vehicles 

from camera 1 and camera 2 are too similar to be discriminated by the 

proposed algorithm. However, almost any video based identification algorithm 

suffers from this difficulty. Thus, in this case, some additional information, 

such as the license plate, can be used to increase the identification accuracy. 

 

  

Figure 27. Sparse coefficients for a testing vehicle 

   

    Figure 27 and Figure 28 show the sparse coefficients and residuals for a 

given testing vehicle, respectively. In Figure 27, we can see that the 

magnitudes of some non-zero coefficients are much larger than others. 

Moreover, the corresponding image IDs of these large non-zero coefficients 
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belong to the same vehicle in the dataset, which is identical to the testing 

vehicle. The error bar, another output of RVM, is also shown in Figure 27, which 

can be used to measure the confidence of each coefficient. In Figure 28, we can 

see that the residual between a testing vehicle and a vehicle in dataset reach 

the minimum value, when the testing vehicle and the vehicle in the dataset are 

identical.    

 

 

Figure 28. Residuals for a testing vehicle 

   

Table 7. Identification accuracy using video, Bluetooth, and license plate 

    

Video only Bluetooth only License plate only Overall accuracy 

57.84% 19.56% 32.63% 77.15% 
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CHAPTER 7  

CONCLUSIONS 

In this project, we mainly consider the problem that the major factor 

influencing the lifetime of the road surface is the commercial vehicle traffic. It 

is necessary to understand their activities by tracking commercial vehicles' 

routes and counting their numbers. In this report, we proposed a video based 

vehicle identification system to track commercial vehicles and their routes 

through the state. Here we treat the problem of vehicle identification from 

different video sources as signal reconstruction out of multiple linear 

regression models, and use rising theories from compressive sensing to solve 

this problem. By employing a Bayesian formalism to compute the 1l  

minimization of the sparse weights, the proposed framework provides new 

ways to deal with three crucial issues in vehicle identification: feature 

extraction, online vehicle identification dataset building, and robustness to 

occlusion and misalignment. For feature extraction, we utilize a simple 

down-sampled features. This theory also provides a validation scheme to 

decide if an incoming vehicle has been already included into the dataset. 

Moreover, unlike PCA or other similar algorithms, using down-sample based 

features, one can easily introduce features of an incoming vehicle into the 

vehicle identification dataset without manipulating the existing data in the 

database. Finally, the Bayesian formalism provides a measure of confidence of 

each sparse weight. We have conducted experiments to include different type 

of vehicles on the interstate highways to verify the efficiency and accuracy of 

our proposed system. The results show that the proposed framework can not 

only handle the route tracking of commercial vehicles, but it also works well for 

any kind of vehicles. 
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LITERATURE RESEARCH FOR LICENSE PLATE 

DETECTION  
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We have also investigated the current research into license plates detection, as 

a supporting approach to the commercial vehicle identification. Table 8 and 

Table 9 show the selected license plate detection approaches from our 

literature review and some of those approaches have been implement for 

comparisons.    

 

Table 8. License plates (LP) detection approaches I  

Approache
s 

LP Detection 
Methods 

LP 
Recognitio
n Methods 

Overall Rate 
Implementatio

n 
Drawback

s 

Haar 
Wavelet 
Transform 
based [46] 

Haar Wavelet 
features and 
vertical 
sub-band 
edges 

NA 
Detection 
rate 97.31% 

Haar Wavelet 
with Gaussian 
filter and edge 
statistics, 

achieved 85% 
accurate rate, 
(98.5% 

detection rate 
with 13.5% 
false rate) 

License 
plate size 

Sliding 
Concentric 
Window 
[47] 

SCW and 
"Local" 

irregularity 

Probabilisti
c Neural 
Network 
(PNN) 

LP 
segmentatio
n 96.5%, 
Recognition 
89.1% and 
overall 
86.0% 

First part SCW 
Not size 
adaptive 

Haar like 
feature 
with 

AdaBoost 
[48] 

Harr like 
feature and 
AdaBoost 
training 

NA 

Detection 
rate 95.6% 
(5.7% false 
positive) 

NA NA 

Gradient 
features 
[49] 

Gradient 
variance, 
density of 
edges and 
density 
variance 

NA 
Detection 
rate 90% 

Feature 
extractions 

NA 

Mean Shift 
[50] 

Rectangularit
y, aspect ratio 
and edge 
density 

NA NA Mean shift NA 

Vanishing 
points 
[51] 

Pre-knowledg
e of size and 
location 

NA NA 
Similar to lane 
detection 

Camera 
setup 

restrictions 
Local 

extremals 
[52] 

Color 
intensity 

NA 
Detection 
rate 95% 

NA NA 



60 

 

 

 

Table 9. License plates (LP) detection approaches II 

   

Approaches 
LP Detection 
Methods 

LP 
Recognition 
Methods 

Overall 
Rate 

Implementatio
n 

Drawback
s 

Color edge 
[53] 

Color model 
transform / 
HIS, fuzzy 
aggregation 

Self-organize
d Neural 
Networks 
(SONN) 

Detection 
rate 
97.9%, 
Recognitio
n rate 

95.6% and 
overall 
rate 
93.7% 

Extract color 
features 

Color 
edges 
varies 

HIS color 
[54] 

HSI color 
system and 
color 

segmentatio
n 

NA 
Detection 
rate 92% 

Color 
detection 

NA 

Real time 
recognition 
[55] 

NA 

Histogram 
matching 
(Gray level 
after 

segmentatio
n) 

Real time NA NA 

Gabor 
Transform 
and Vector 
Quantizatio
n [56] 

2D Gabor 
filter 

NA 
Detection 
rate 98% 

Gabor features NA 

Multiple 
interlacing 
[57] 

Multiple 
Interlacing 
method 

Neural 
Network 

Overall 
rate 95% 

NA NA 

Gradient 
and match 
filtering 
[58] 

Gradient 
features and 
matching 
filter 

NA NA 
Gradient 
features 

NA 

Blob 
growing 
[59] 

Blob 
growing 

Template 
matching and 
Neural 
network 

Overall 
time 2.41 
s (Celeron 
850 mHz) 

NA NA 
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APPENDIX B  

SOFTWARE DESIGN RELATED CONCEPTS  
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    This section describes the software part of the project. First some core 

technologies employed are introduced. Then the technology stack is described. 

At the end of the section is the discussion of the detailed design of each 

component. 

THE SYSTEM AND ITS COMPONENTS 

The whole system consists mainly three parts: the central service, sensing 

stations and clients. 

    The central service is the key component of the system. Data collected by 

the sensing station are sent to the central service for further processing. The 

algorithm for car identification resides here. If a client desires to query car 

identification result, they need to query from the central service as well. 

    Client workstations are terminals which query the identification result from 

the central service. A GUI desktop application is installed, and end users can 

perform any query operations through the GUI. 

    Sensing stations comprise bluetooth sensors, ALPR, and video cameras for 

collecting vehicle data. 

    These components are illustrated in Figure 29. 

CORE TECHNOLOGIES  

RESTful Web Service 

The inter-process communication (IPC) between the server, sensors, and 

clients are through web services. In this section, we briefly introduce the web 

service technology, and especially the relatively new RESTful-style web service 

which we adopted for the implementation. 
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Figure 29. System Architecture 

   

Web Service 

Web services are typically application programming interfaces (API) or web 

APIs that are accessed via Hypertext Transfer Protocol (HTTP) and executed on 

a remote system hosting the requested services. Web services tend to fall into 

one of two camps: Big Web Services and RESTful Web Services. 

 

RESTful Web Service 

Representational State Transfer (REST) [60] attempts to describe 

architectures which use HTTP or similar protocols by constraining the interface 

to a set of well-known, standard operations (like GET, POST, PUT, DELETE for 
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HTTP). Here, the focus is on interacting with stateful resources, rather than 

messages or operations. 

    REST defines a set of architectural principles by which you can design Web 

services that focus on a system's resources, including how resource states are 

addressed and transferred over HTTP by a wide range of clients written in 

different languages. If measured by the number of Web services that use it, 

REST has emerged in the last few years alone as a predominant Web service 

design model. In fact, REST has had such a large impact on the Web that it has 

mostly displaced SOAP- and WSDL-based interface design because it's a 

considerably simpler style to use. 

    A REST Web service follows four basic design principles:   

    • Use HTTP methods explicitly.  

    • Be stateless.  

    • Expose directory structure-like URIs.  

    • Transfer XML, JavaScript Object Notation (JSON), or both.  

 

    By these rules, the clarity of the interface of the web services is 

significantly improved, and development is easier as well. 

 

Actor Model 

In each sensing station, A thread consistently reads data stream from video 

camera and detects vehicles. After the detection, it triggers the station to read 

license plate number, bluetooth records. These data together with the visual 

features of the vehicle will be send back to the server. So here we need a 

concurrency mechanism. 

 

    Shared-memory Multiplethreading: there are different models for 

concurrency. One most popular model is shared-data model. In this model, the 
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threads of a process share the latter's instructions (its code) and its context 

(the values the various variables have at any given moment). To give an 

analogy, multiple threads in a process are like multiple cooks reading off the 

same cook book and following its instructions, not necessarily from the same 

page. 

 

 

Figure 30. Shared-memory Multiplethreading 

   

    This model has been very successful, and it's widely used in many products. 

But it has its own problem. Since multiple threads sharing the same state, if 

dealt with inappropriately, the shared data can be corrupted, or the system can 

run into deadlock. 

 

    Actor Model: the Actor model [61] is another mathematical model of 

concurrent computation that treats "actors" as the universal primitives of 

concurrent digital computation: in response to a message that it receives, an 

actor can make local decisions, create more actors, send more messages, and 

determine how to respond to the next message received. The Actor model 
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originated in 1973. It has been used both as a framework for a theoretical 

understanding of concurrency, and as the theoretical basis for several practical 

implementations of concurrent systems. 

    The Actor model adopts the philosophy that everything is an actor. This is 

similar to the everything is an object philosophy used by some object-oriented 

programming languages, but differs in that object-oriented software is 

typically executed sequentially, while the Actor model is inherently concurrent. 

 

 

Figure 31. Message Passing 

   

    The advantage of the actor model over shared-memory models is that, 

each actor operates only on its own, private data. Since all data is private, in 

theory you won't need any locks at all. Without locks, you're obviously immune 

to problems like deadlock. Without shared data to modify, race conditions are 

impossible (since no two threads compete over it). 

 

    Domain Driven Design: Domain-driven design (DDD) [62] is an approach 

to developing software for complex needs by deeply connecting the 

implementation to an evolving model of the core business concepts.[1] The 
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premise of domain-driven design is the following:  

    • Placing the project's primary focus on the core domain and domain logic  

    • Basing complex designs on a model  

    • Initiating a creative collaboration between technical and domain experts 

to iteratively cut ever closer to the conceptual heart of the problem.  

    Domain-driven design is not a technology or a methodology. DDD provides 

a structure of practices and terminology for making design decisions that focus 

and accelerate software projects dealing with complicated domains. 

TECHNOLOGY STACK 

Scala as the programming language 

Scala [63] is a general purpose programming language designed to express 

common programming patterns in a concise, elegant, and type-safe way. It 

smoothly integrates features of object-oriented and functional languages, 

enabling Java and other programmers to be more productive. Code sizes are 

typically reduced by a factor of two to three when compared to an equivalent 

Java application. 

Maven as the build tool 

Apache Maven is a software project management and comprehension tool. 

Based on the concept of a project object model (POM), Maven can manage a 

project's build, reporting and documentation from a central piece of 

information. 

ScalaTest as the unit testing library 

ScalaTest is designed to facilitate different styles of testing in Scala 

programming language. ScalaTest provides several traits that you can mix 

together into whatever combination makes you feel the most productive. For 
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instance, the above example illustrates a Behavior-Driven Development (BDD) 

style. 

GIT as a source code repository 

GIT [64] is a distributed version control system. Its highlights include: 

distributed development, strong support for non-linear development, efficient 

handling of large projects, and cryptographic authentication of history. 

DETAILED DESIGN 

Central Service 

The central service is the key component of the system. Data collected by the 

sensing station are all sent to the central service for further processing. The 

algorithm of car identification resides here. Also if a client wants to query car 

identification result, it needs to query from the central service as well. 

    The user interface of the central service is a RESTful web service. With this 

interface, sensing stations can push data collected to the service. The central 

service then parses the data, generates domain models, and with the help 

from repositories saves the data into database. With these data, the car 

identification algorithm can perform computation and get the result. 

    The car identification algorithm is behind another RESTful web service. 

This web service is designed specifically for clients to query the result. The 

querying event triggers a identification action. As described in the algorithm 

sections, this event puts a test data into the classification algorithm and 

returns the result. 

    Whenever new data is captured by the sensing station, it is pushed back to 

the central server and added to the training dataset. The algorithm performs 

learning on this dataset to output a classifier, which is used to do car 

identification. 
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Figure 32. Central Service Domain Class Diagram 

Bluetooth Sensor 

In the bluetooth sensor, records captured are stored in a mysql database. To 

expose the data so that other devices and query the captured data, a RESTful 

web service is installed on the bluetooth sensor. 

    There are multiple RESTful web service frameworks on Java platform like 

Restlet, JBoss RESTEasy, Jersey, Apache CXF, NetKernel, Apache Sling, and 

Restfulie. They all provide complete RESTful web service support, but need a 

certain amount of work to setup and consumes considerable resource on the 

device. In the case of bluetooth sensor, the only operation is query, thus these 

full-blown frameworks are overkilling. 

    Here we chose simple Java Servlet as the RESTful web service framework. 
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The servlet captures the incoming URL request, reads get parameters, querie 

database, and returns the result to the client. 

    The format of URL is:  

http://server:host/servletname?start=ssss&end=eeee  

where ssss and eeee specify the range within which records were captured. 

    After parsing the query string, the servlet uses JDBC to query database 

and generates the XML in the following format:  

 <records>  

    <record> 

        <unixTime>***</unixTime>  

        <macAddress>***</macAddress>  

        <deviceType>***</deviceType>  

        <unitSN>***</unitSN>  

    </record>  

    <record>  

        <unixTime>***</unixTime>  

        <macAddress>***</macAddress>  

        <deviceType>***</deviceType>  

        <unitSN>***</unitSN>  

</record> 

<record>  

...  

</record>  

...  

</records>  

    The servlet pass the XML back to the client. 

    The class diagram of the RESTful web service is illustrated in Figure 33. 
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Figure 33. Bluetooth Class Diagram   

Clients 

Client workstations are terminals which query the identification result from the 

central service. It might need a GUI desktop application installed and end users 

can perform any query operations through the GUI. Again it connects to the 

central service through the RESTful web service. Development of clients are 

mainly focuses on the user interfaces design and communication with the 

central service, thus not described in detail here. 
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Sensing Station 

A sensing station comprise a blutooth sensor, a ALPR, and a video camera. The 

video camera acts like a trigger, which detects the vehicle and triggers read 

operation to the bluetooth sensor and the ALPR. Since vehicles pass the 

sensing station in a fast speed, the processing needs to be real-time, so the 

code reading data stream from the video camera and detecting passing 

vehicles has to be running on a separate thread. 

    Here we employ the actor model to do concurrency. The class 

VideoCameraActor pulls data from the video camera and does analysis. Once a 

vehicle has been detected, it sends a VehicleIdentifiedMsg to the Mediator, 

which in turn read data from bluetooth sensor and the ALPR. Putting all these 

data together, features of the car are captured. These data will be then send to 

the central server for further processing. 

 

 

Figure 34. Station Class Diagram 

   

    As stated above, the bluetooth sensor sends back data requested as a XML 

string. To parse the data, class BluetoothXMLParser is implemented. It goes 
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through the XML string, picks up each value and populate the data into a 

BluetoothRecord object. 

    The Actor class of the Actor Model framework is from Scala programming 

language. 
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